18th International Conference on Innovative Computing, Information and Control (ICICIC2024) September 10-13, 2024, Qinhuangdao, China Copyright©2024 ICIC International

Full Title of Your Paper

Peng Shi¹, Yuanqing Xia^{1,*} and Junhu Ruan²

¹School of Technology University of Glamorgan Pontypridd, Wales, CF37 1DL, United Kingdom XXX@glam.ac.uk; *Corresponding author: XXX@glam.ac.uk

²College of Economics and Management Northwest A&F University No. 3, Taicheng Road, Yangling 712100, P. R. China XXX@nwsuaf.edu.cn

Received XXX 2024; accepted XXX 2024

1. Introduction. Please write down the Introduction of your paper here...

2. **Research Questions.** Please write down research questions in this section. When you cite some references, please give numbers, such as, ... In the work of [1-3,5], the problem of... For more results on this topic, we refer readers to [1,4,5] and the references therein...

3. Methodologies. Please write down methodologies employed in this paper...

Examples for writing definition, lemma, theorem, corollary, example, remark.

Definition 3.1. *System (1) is stable if and only if...*

Lemma 3.1. If system (1) is stable, then...

Corollary 3.1. If there is no uncertainty in system (1), i.e., $\triangle A = 0$, then... **Example 3.1.** Let us consider the following example...

$$\ddot{y} x(t) = Ax(t) + Bu(t) + B_1 w(t)$$
(1)

$$y(t) = Cx(t) + Du(t) + D_1 w(t)$$
(2)

Lemma 3.2. If systems (1)-(2) are stable, then...

$$\ddot{y} x(t) = Ax(t) + Bu(t) + B_2w(t)$$
(3)

$$v(t) = Cx(t) + Du(t) + D_2w(t)$$
(4)

Theorem 3.1. *Consider system (3) with the control law...* **Proof:** Let...

Remark 3.1. It should be noted that the result in Theorem 3.1...

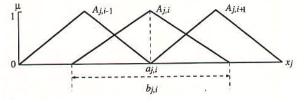


FIGURE 1. Triangular-type membership functions for x_i

4. Results. In this section, we present...

	x_{l}	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> 5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁
M_1	1	1	1	0	0	0	0	0	0	0	0
M_2	0	0	1	1	1	1	1	0	1	0	0
M_3	0	1	0	1	1	0	0	1	0	0	0
M_4	1	0	0	0	2	0	0	1	0	0	0
M_5	0	0	0	1	0	1	1	0	0	0	0

TABLE 1. Sample Data

5. Conclusion. From this study, we can conclude that...

REFERENCES

- [1] M. Mahmoud and P. Shi, *Methodologies for Control of Jump Time-delay Systems*, Kluwer Academic Publishers, Boston, 2003.
- [2] P. Shi, Limited Hamilton-Jacobi-Isaacs equations for singularly perturbed zero-sum dynamic (discrete time) games, *SIAM J. Control and Optimization*, vol.41, no.3, pp.826-850, 2002.
- [3] S. K. Nguang and P. Shi, Fuzzy H-infinity output feedback control of nonlinear systems under sampled measurements, *Automatica*, vol.39, no.12, pp.2169-2174, 2003.
- [4] E. K. Boukas, Z. Liu and P. Shi, Delay-dependent stability and output feedback stabilization of Markov jump systems with time-delay, *IEE-Part D, Control Theory and Applications*, vol.149, no.5, pp.379-386, 2002.
- [5] P. Shi, E. K. Boukas and R. K. Agarwal, H1 control of discrete-time linear uncertain systems with delayed-state, *Proc. of 37th IEEE Conference on Decision & Control*, Tampa, Florida, pp.4551-4552, 1998.